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ABSTRACT. Aside from primordial gravitational instability of the cosmological fluid, various mechanisms have 
been proposed to generate large-scale structure at relatively late times, including, e.g.. “late-time” cosmological phase 
transitions. In these scenarios, it is envisioned that the universe is nearly homogeneous at the time of last scattering and 
that perturbations grow rapidly sometime after the primordial plasma recombines. On this basis, it was suggested that 
large inhomogeneiticza could be generated while leaving relatively little imprint on the cosmic microwave backgmund 
(MBR) anisotmpy. In this paper, we calculate the minimal anisatmpies possible in oray “late-time” scenario for 
structure formation, given the level of inhomogeneity observed at present. Since the growth of the inhomogeneity 
involves time-varying gravitational fields, these scenarios inevitably generate significant MBR anisotropy via the Sachs- 
Wolfe effect. Moreover. we show that the large-angle MBR anisotmpy produced by the rapid port-recombination 

growth of inhomogeneity is generally grwter than that produced by the same inhomogeneity grown via gravitatiorial 
instability. In ‘realistic” scenarios one can decrease the anisotropy mmpared to models with primordial adiabatic 
fluctuations, but only on very small angular scales. The value of any particular measure of the anisotropy can be made 
small in late-time mod&, but only by making the time-dependence of the gravitational field sufficiently “pathological”. 

I. Introduction 

Soon after the discovery of the Microwave Bsckground Radiation (MBR), it was noted that measure- 
ments of differences in the MBR temperature in different directions (anisotropy) would provide a sensitive 

probe of large-scale density inhomogeneities in the universe (Sachs and Wolfe 1967, Rees and Sciama 1968). 
Recently, the COBE satellite has discovered MBR anisotropy on large angular scales (> 10’) (Smoot, et 
al. 1992), and experiments on smaller angular scales have seen signals which may also turn out to be 
anisotropy in the MBR (Gaier, et al. 1992, Devlin, et al. 1992, Meyer, et al. 1991). While it is clear that 
large scale density perturbations in the universe will induce MBR anisotropies, the relationship between the 
anisotropies and the perturbations depends on how the inhomogeneities are produced. The usual sssump- 
tion is that the density perturbations are primordial, i.e., produced long before recombination, and evolve 
gravitationally in a relatively simple cosmological fluid composed of, e.g., photons, neutrinos, baryons, and 
dark matter. If the cosmological matter does have such a simple equation of state, then the inhomogeneities 
must be primordial, since they will not arise spontaneously in such a fluid. The relation between density 
inhomogeneities and temperature anisotropies for such primordial perturbations is fairly well understood 
(Sachs and Wolfe 1967; for a recent introduction, see Peebles 1993), and the implications of the COBE 
detection for primordial perturbations have been extensively studied (e.g., Wright et al. 1992, Efstathiou, 
Bond, and White 1992). In the simplest case, a spatially flat, Einstein-de Sitter universe with R = 1, the 
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MBR anisotropy gives an imprint of conditions at recombination, when the MBR last scattered; we will call 
these “primordial” anisotropies. 

The other possibility to consider is that the dynamics of some component of the matter in the 
universe is much more complex than that of a simple fluid, and is able to induce perturbations even at 
very late times. One class of such models is that of topological defects, such as cosmic strings, textures, 
or global monopoles. The dynamics of the defects is nontrivial, and as they move around, they induce 
perturbations in the other matter components (baryons, photons, etc.) via their gravitational attraction. 
In these models, perturbations are produced both before and after recombination. The induced MBR 
temperature fluctuations are a mixture of the classical “primordial” anisotropies and anisotropies produced 
after recombination (Stebbins 1988. Turok and Spergell990, Bouchet. Bennett, and Stebbins 1988, Bennett, 
Stebbins, and Bouchet 1992, Bennett and Rhie 1992). 

Another class of models are ones in which perturbations are generated primarily after recombination, 
or more specifically, in which the inhomogeneity in the gravitational potential increases significantly after 
recombination. These scenarios include “late-time” phase transitions (Wasserman 1986, Hill, Schramm, 
and Fry 1989, Hill, Schramm, and Widrow 1991, Press, Ryden, and Spergel 1990, Fuller and Schramm 
1992, Frieman, Hill, and Watkins 1992) involving non-trivial scalar field dynamics. In this scenario, one 
could start with an essentially homogeneous universe at the epoch of last scattering and thus avoid all 
“primordial” anisotropy. Consequently, it was thought, such models could generate the observed large-scale 
structure with very small imprint on the MBR, and late phase transitions were posed as alternatives to 
the standard primordial gravitational instability scenario, which, even after COBE, appears to be on the 
edge of producing an excessive small-scale MBR anisotropy. However, one does not completely avoid MBR 
anisotropies in the late-time scenario: in this case, both density perturbations and MBR anisotropies are 
produced after recombination. If the universe is homogeneous at last scattering, then gravitational field 
perturbations must subsequently grow from zero to their present value in order to account for the observed 
structure. This time-varying gravitational field will induce MBR anisotropies which may not be very small 
compared with the “primordial” anisotropies produced in the primordial instability scenario. In other words, 
MBR anisotropies are an inevitable consequence of the existence of density perturbations today. 

In this paper, we calculate the minimal MBR anisotropies associated with scenarios for late structure 
formation such as a late-time phase transition. More specifically, we determine the minimal anisotropies 
implied by the boundary conditions of zero inhomogeneity at recombination and a fixed present amplitude 
of density inhomogeneity inferred from redshift surveys. We do not deal with any particular model of such 
a phase transition, so we give no predictions for the anisotropies that might be expected in a completely 
‘realistic’ scenario. Rather we set a firm lower limit on how small these anisotropies can be, given the observed 
level of large-scale structure. As we shall see, this lower limit is not particularly small when compared to what 
is expected in scenarios with primordial density inhomogeneities. Moreover, when reasonable smoothness 
conditions are placed on the evolution of the gravitational potential, the large-angle anisotropy in the late- 
time scenario is generally larger than that for primordial adiabatic fluctuations with the same present level 
of clustering. 

Several estimates of the induced anisotropy have previously been calculated for specific late-time 
scenarios (Zel’dovich, Kobzarev, and Okun 1974, Stebbins and Turner 1989, Turner, Watkins, and Widrow 
1991). These estimates suggest that, in models involving domain walls, the anisotropy may be significantly 
larger than in the primordial gravitational instability picture. However, methods to fix up the domain wall 
problem have been suggested (Massarotti 1991, Massarotti and Quashnock 1992), and late-time transitions 
without domain walls have also been investigated (Press, Ryden, and Spergel 1990, Frieman, Hill, and 
Watkins 1992). This flux of theoretical developments has motivated the model-independent approach we 
adopt here. 

In 511, we set up the problem of minimizing the temperature correlation function C(a). We analyt- 
ically study the minimization of the rms variance in the temperature fluctuation, C(O), 6rst assuming the 
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time-dependence of the gravitational potential is continuous and bounded. and then allowing it to become 
unbounded. In the latter case, the anisotropy is reduced. This illustrates our general result: if the gravita- 
tional potential is constrained to be a smoothly varying function of time, the anisotropy is substantially larger 
than if the potential is unconstrained. In particular. the large-angle anisotropy for a sufficiently smoothly 
varying potential is generally larger than for primordial adiabatic perturbations, while the anisotropy for a 
pathological potential function can be smaller. We also point out the differences expected in the angular 
dependence of the anisotropy between the primordial and late-time scenarios. In $111, we discuss minimiza- 
tion of the anisotropy for experiments with finite beam-width, and solve the problem numerically for several 
beam configurations. In §IV, we use analytic fits to the power spectrum of large-scale clustering suggested 
by recent redshift surveys to normalize the results and make estimates of the minimal anisotropy for differ- 
ent experimental beamwidths. We conclude in §V. The details of some of the numerical computations are 
relegated to the Appendices. 

(A note on nomenclature: subtracting off the monopole and dipole anisotropy, MBR anisotropies on 
large angular scales can generally be decomposed into two components, one of which can loosely be thought 
of as arising from the gravitational potential at the surface of last scattering, and the other as due to the 
time-dependent gravitational potential along the path of the MBR photons since recombination. We are 
calling these two terms “primordial” and “post-recombination” respectively. In the literature, these are 
sometimes called the “Sachs-Wolfe” and “Rees-Sciama” effects, but they are both contained in the Sachs- 
Wolfe (1967) formalism. Nevertheless, we will sometimes partially lapse into this usage as well, and use the 
terms “primordial” and “usual Sachs-Wolfe” interchangeably. The post-recombination effects we are talking 
about are rather different than the “Rees-Sciama effect”: Rees and Sciama (1968) studied the anisotropies 
produced by spherical growing mode density perturbations after recombination, and found differences from 
the classical Sachs-Wolfe effect only due to the non-linearities in the gravitational instability of the matter. 
The anisotropies we consider are linear in the amplitude of the present density inhomogeneities.) 

II. Minimal Models: Formalism and Analytic Results 

As shown by Sachs and Wolfe (1967), a non-uniform gravitational field causes anisotropies in the MBR 
by making differentid changes in the energy of photons. In a spatially flat (k = 0) Friedmann-Robertson- 
Walker (FRW) cosmology, which for simplicity we shall assume throughout, the perturbed metric can be 
written g,,y = a*(~)(~,,, + hllY), where a(~) is the FRW scale factor, vlly = diag[-l,l, 1, I] is the Minkowski 
metric, h,, is the metric perturbation, and 7 = 5” is the conformal time, Q = ldt/a. In this geometry, the 
fractional change in energy of photons moving along the null geodesic z’(X) is 

AT 1 ‘)’ -=-- T 2 ‘I, n”n” (h,v,o - 2hop.v) dq J (2.1) 

to tist order in the perturbation. In this expression, n“ = dx’/dq is the tangent vector of the unperturbed 
photon trajectory, with components no = 1, ni, where ~5 is a spatial unit vector, qijninj = 1, i, j = 1,2,3. 
The derivatives hpv+, are evaluated at points ~~11 along the unperturbed photon path. 

We can decompose a general metric perturbation h,,(z’) into scalar, vector, and tensor modes, 
which evolve independently in linear perturbation theory. These modes are orthogonal in the sense that 
the expected value of any quadratic measure of the anisotropy is just a sum of the scalar, vector, and 
tensor components, with no cross terms. Here we only consider quadratic measures of the anisotropy. At 
present, since there is no compelling evidence for the existence of vector and tensor metric perturbations 
in the universe, we can estimate the minimal AT/T consistent with observations by considering scalar 
perturbations alone. Nonzero vector and tensor modes can only increase the anisotropy. 

For scalar perturbations, in longitudinal (or conformal Newtonian) gauge, the metric perturbation 
takes the form ho0 = 2@, h;j = - 2’Z’qij, where @(x,7) and C’(X, q) are gauge-invariant variables. (In the 
notation of Bardeen (1980), @ = @A and q = 48.) Substituting into the %&s-Wolfe integral (2.1), 
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setting the metric and temperature fluctuations to zero at recombination. and ignoring the boundary term 
at the observer, which only contributes to the monopole and dipole anisotropy, we have 

AT w -= 
J T w 

dq(&+&) (2.2) 

where an overdot denotes differentiation with respect to confomnl time. This expression is manifestly 
gauge-invariant, For a spatially flat (Cl = 1) 
time qr = q,,/(l + z,)l/* with .zp z 

matter-dominated universe, recombination occurs at conformal 
1100, and the conformal time today is q,, = 2H;’ = 6000h-’ Mpc. (We 

use units in which the speed of light c = 1.) 

If we +ssume that the universe is dominated by nonrelativistic matter today (or, more generally, if 
the anisotropic stress of the currently dominating matter vanishes, 6Tj N a;), then the present boundary 
condition for the two ‘gravitational potentials’ Q and QJ is Go = Qo. As a result, since the two potentials 
enter the Sachs-Wolfe integral (2.2) identically, for the solution which minimizes AT/T they will be equal 
for all time, Q = a. (Note that if the universe is currently dominated by matter with anisotropic stress, 
one could violate this assumption. In fact, since only @ contributes to the motion of non-relativistic matter, 
e.g., galaxies, in this case one could conceivably set GJ = 0 for all time, reducing the anisotropies we will 
calculate by a factor of two. However, this would presumably require a rather bizarre stress tensor for 
the dark matter, so we will not consider this possibility further.) Putting in the explicit argument of the 
potential, we thus have 

AT ‘lo 
--=2 J T ‘tr 

dv +(x0 - fi(vo - II), r)), (2.3) 

where x, is the observer position coordinate. In the presence of primordial adiabatic perturbations at the 
surface of last scattering (i.e., what is usually called the Sachs-Wolfe effect), there would also be a term 
(AT/T)sw = (1/3)@(0,). In the case we are considering here, however, there is no metric or radiation 
perturbation initially, and the boundary term at emission (7 = qv) is zero. 

For the moment we do not subtract off the contribution to the monopole and dipole contribution from 
(2.3). For experiments that only probe wavenumbers k such that kq,, > 1, ix, wavelengths much smaller 
than the present Hubble radius, this subtraction would not make much difference anyway. Below, we will 
consider the rms temperature fluctuation for a realistic experimental beam configuration; here, we consider 
the full temperature autocorrelation function 

c,,(a) = T (ti) $ (ti)) ( = 4 J- dq J”’ il-ti=c.as04 ‘I. ‘I, drl’ (+a - fi(qo - ~~)>rl)+o - Mqo - Gv’)), 

where (. .) denotes an average over all positions x., and all directions I& ti separated by an angle Q. 
(2.4) 

Taking the Fourier transform of the potential, 

@(xv 7,) = J d3k - 
o3 @(k rl) ei’- , 

results in 

~(a)=4 J$$ J$$ J,~d~J1~dllf(e’X..(k-k’)),~ 

x (e -ik.a(~,.--tl)+ik’.m(l).-r)‘))il,m=co~~(~(krrl)~*(k’, $)) 
Performing the appropriate averages: 

(e kWc’))h = + ./ ,jaX @--k’)% = q@,(k _ k’) 

and (see Appendix A) 

(,-ik.i(.l.-~)+ik’.mo,-r)‘)) __ = n m collDl = jo(kd(qo - rlJz + (v. - q’)* - z(rl, - II)(Q -q’) ma) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
gives 
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cm(a) =; J$$ l-%j-; ddh(kd(rlo - qJ2 +(7/o - rl’J2 - q7.3 - q)(vo - 7’) cosa) (2.9) 
x &k&‘(k. II’)), 

where jo(z) = sinz/s is a spherical Bessel function. 

We can factor out the temporal dependence of & for each k-mode, 

@k,rl) = ‘%(k)fk(l?) with fk(%) = 0, fk(%,) = 1. (2.10) 

We will aSsume that the present day (7 = vO) gravitational potential field is statistically homogeneous and 
isotropic and hence the expectation of the product, &,,(k&(k’), is given by the gravitational potential 
power spectrum today, which we call Q; since Q can only depend on k = Ikl, we have 

(&,(k)&;(k’)) = (2n)3Q(k) @(k - k’) x VQ(k)& (2.11) 

Thus, the correlation function may be written, 

CLT(Q) = 4 J $$ Q(k) 1; drl l: dv’jo(kd(s - rl)* + (v. - 0 - ~(7~ - T)(Q - ~1) COSCZ) 
(2.12) 

x fk(‘dk(d) 

Since the mean square anisotropy is just the sum of the anisotropies from the different k modes, we may 
optimize the different k modes (to give minimal C(u)) independently. Also note that the optimization just 
depends on k = Ikl and not on the direction of k, so the solution for the fk with the same k will be exactly 
the same. Hence we can assume that fk only depends on k and we henceforth use the notation fk. 

By contrast, for the usual Sachs-Wolfe effect (i.e., with primordial adiabatic fluctuations, and purely 
gravitational evolution thereafter), the temperature correlation function is instead 

c&w(a) = ; J Q(khWv~ - qr) *in(+)) (2.13) 

To reiterate: for prim+ial, linear adiabatic fluctuations evolving purely g&vitationally in an R = 1, matter- 
dominated universe, fk(q) = 0 and (2.12) vanishes: in this case, (2.13) gives the entire anisotropy on large 
angular scales. Here, we are considering the ‘opposite’ case in which the primordial anisotropy Csw(cr) = 0, 
and we are seeking to minimize the anisotropy (2.12) arising from the time-dependent gravitational potential, 
independent of any assumptions about gravitational evolution. 

To make contact with observations of large-scale structure (see §IV), it is useful to relate Q(k) to 
P(k), the power spectrum of density fluctuations. Defining the Fourier transform & of the density field 
6p(x, q)/p a8 in (2.5), the density power spectrum is defined by analogy with (2.11), 

(a&,) = (2?r)3P(k)63(k - k’). (2.14) 

By Poisson’s equation, V2* = 47&p, in an R = 1 universe, 

Q(k) = ;$‘(k), / $$ Q(k) = 3 Jdk k-2f’(k). (2.15) 
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Minimizing C(0) 

We first consider the minimization of C(0) = ((AT/T)2), th e rms variance in the temperature fluctu- 
ation on the sky; although this is an unmeasurable quantity, it generally sets the scale for the temperature 
perturbations for a model. In the late-time scenario, from (2.12) and (2.15), 

CLT(O) = 4 (2r)3 J d3k Q(k) 1; dv J,: ddjo(k(rl' - v))h(v)fk(v') 
9J-I; =- 
279 J dkk-‘P(k) J J ‘lo dq ‘O ddjo(k(tl' - v))h(v)idd) Tr ')r 
9l-g =jyqT J dk k-2W) Ik[fk] , 

while, for primordial adiabatic perturbations, the Sachs-Wolfe result (2.13) is 

Csw(O) = ; J & Q(k) = $ Jdk k-2P(k) 

(2.16) 

(2.17) 

In general, for power spectra that behave as P(k) c( k” for small k, the integrals (2.16) and (2.17) witl 
diverge at long wavelengths if n < 2. Since C(0) is not an observable, this divergence is not problematic. 
For example, we would obtain finite results if we calculate physical quantities such as dZ(C(O) -C(a)), 
the rms temperattire difference measured by a two-beam experiment with a beam-throw of angle a. (In 
addition, we should take into account the finite width of any real beam.) Alternately, we could subtract off 
the unmeasurable monopole and dipole terms from C(a) (see below). Here, we are interested in comparing 
the usual Sachs-Wolfe and the late-time anisotropies in k-space, so we need not perform the divergent 
wavenumber integrals. 

If we wish to minimize the functional (2.16), it remains to find a set of optimal solutions fk(q), given 
by the minimization of 

IdhI = j-r dv 1: dddv - rl’) fddidd), where gk(v - 7’) = si;!$;,;), g&z) = gk(-5) , 

with respect to the function fk, which must satisfy the boundary conditions (2.10). 
(2.18) 

High and Low Frequency Limits: The Linear Model 

To gain some insight into the level of minimal anisotropy expected, we can analytically explore the 
integral Ik in the short and long wavelength limits, which correspond roughly to kqo much larger and smaller 
than one respectively. (It is useful to recall the conversion k = (6.67x 10m5kq.,) h Mpc-I.) If the the function 
f is well approximated by its Taylor series close to every point, then in the short wavelength limit k + cm, 
we may make the substitution in the integral (2.18) 

gk(q - 7') E "i;(kJ,vL;,"' + r 6(k(v - ~'1) 

In this limit, I& reduces to the action functional for a free particle with ‘coordinate’ fk, and the condition 
for an extremal time history is 

fk=o, i.e., fk(rj) = fp E E c=z ; 
0 r 

(2.20) 
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In this case, the minimal temperature correlation function becomes 

J d3k Q(k) 
CLT@) -4a (2*)3 K 83 k + m, (2.21) 

where~d=rl,-~,z:r),. Comparing with the usual Sachs-Wolfe expression (2.17), we see that, for the same 
amplitude of present structure P(k), the minimal late-time anisotropy is only smaller than the primordial 
anisotropy in the wavenumber range 

k?ld > 36~ or X < 2. 
18 

(2.22a) 

In the spatially flat cosmology we have assumed, this corresponds to 

k-’ < 53 h-‘Mpc or X < 333 h-‘Mpc. (2.22b) 

corresponding to a few degrees on the sky. (This lengthscale is comparable to the largest scales currently 
probed by redshift surveys, Cf. Fig. 3 below.) Thus, for the very large-scale perturbations which are 
now starting to be probed by COBE and other experiments, one cannot really do better than primordial 
adiabatic perturbations in minimizing the anisotropy. We can understand results (2.21-22) heuristically, 
by considering the contribution from perturbations of comoving wavelength X to the rms anisotropy. For 
primordial adiabatic perturbations, (AT/T),, = (l/3)@, where the potential fluctuation on scale X is 
@A w (cSp/p)x(X/to)*. For late-time perturbations, on the other hand, the anisotropy is proportional to 

the integrated time-derivative of the potential, (AT/T),, u s &xdt N @o,~(X/to)N:‘~, where NX u to/X 
is roughly the number of lumps of size X between the observer and the hypersurface when the potential 
began to increase (assumed to be at .z ;t 1 here). As a result, we find (AT/T)LT N @o,~(X/to)‘/2; not& that 
this wavelength dependence agrees with (2.21). Comparing this late-time expression with the Sachs-Wolfe 
anisotropy above, we see that the minimal late-time anisotropy is smaller than the primordial anisotropy 
only for small wavelengths, (X/Hr1)1/2 2 l/3, in agreement with (2.22). At large wavelengths, the minimal 
late-time anisotropy is greaterthan the standard Sachs-Wolfe result because, for primordial adiabatic pertur- 
bations, the anisotropy is only l/3 of the gravitational potential fluctuation. This famous l/3 factor arises 
from a partial cancellation between the gravitational redshift, @, and the varying radiation temperature at 
recombination (AT/T), = -(2/3)ip (for superhorizon perturbations in Newtonian gauge). In contrast, for 
the late-time scenario there is no corresponding cancellation since the last-scattering surface is unperturbed. 

The linear form (2.20), f;“(q) = (II - qr)/v,j, is a good paradigm for a slowly increasing potential 
fluctuation. and we shall use it as a fiducial reference against which to compare other results. Let us see 
what it gives for arbitrary k. In this case we have 

1 IF = & J J 1 dYSwTd(z - Y)) 

0 0 k’ldld(~ - Y) 

= 2 hi Si(kqd) - (1 - cos(k%)) 

(k’ld2 1 
(2.23) 

where Si is the sine integral function (see Appendix A). Since Si(m) = 5 and Si(s) = z + 0(z3) for small 
x, we 6nd the limits 

I:i + ” for krld + 00 
k’ld 

a,d I? + 1 for kqd + 0. (2.24) 

The kqd -) 00 limit here agrees with eqn.(2.21). 
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Angular Structure for the Linear Model 

Although the absolute values of the temperature fluctuations in late-time models may be comparable 
to those in standard primordial adiabatic perturbation scenarios, the angular dependence of the anisotropy 
for the two cases can be quite different. To see this, we compare the quantities J(k, a) that are integrated 
with the power spectrum in the temperature correlation function: 

c(o) - C(a) = 2 / dk k-2P(k)J(k, a) 

Jsw(k a) = k [I - j0(2kqo sin(a/2))] 

JLr(kia)=;J:ldq~;d’ [. ‘I jo(k(v - ~‘1) -N&o - r)j2 + (70 - v’J2 - qq., - q)(qo - q’)cosn) 1 
(2.251 

where we have used the linear model f;“(q) in JLT. In Fig. 1, we plot JLT and Jsw as functions of k for 
different values of the angle Q. Two differences between them are immediately apparent. First, consider the 
behavior at large k: in this regime, the contribution to J is dominated by the cz = 0 part, J(k, a) + 416. 
For the Sachs-Wolfe case, with Ik = l/36, the contribution does not fall off at these small scales. For the 
late-time model, .7(&a) z 4Ik -t 4x/kqo for large k (for a particular value of the angle a, this limit is 
appropriate for all k beyond the maximum of J LT for that angle-ix., beyond the scale that contributes the 
greatest to anisotropies of that angular separation.) Because of this difference, power spectra with significant 
small-scale power may imply greater anisotropies for primordial perturbations than in the late-time case. 

Of greater import, however, are the values of J on intermediate SC&S. Although the maxima of J 
are located at similar values of k for both cases, the maximal values of J are much greater for the late-time 
scenario. On very small angles, the contribution of intermediate scales to the primordial Sachs-Wolfe-effect 
is larger than for the late-time scenario; however, as the angle increases, the contribution to the anisotropy 
for the late-time model continues to grow, whereas in the Sachs-Wolfe caSe the maximum value of J remains 
approximately constant, independent of a. For a given power spectrum, then, the anisotropy at a given 
angular scale will getierically be larger for a late-time scenario than for primordial perturbations, unless the 
evolution of the potential is specifically chosen to decrease the anisotropy on that scale. 

Low Frequencies 

In the other extreme of low frequencies, or long wavelengths, from (2.18) we have gh -3 l,,so the 
dependence of Ik on the functions fk drops out; from the boundary conditions (2.10), we then find Ik + 1, 
which agrees with and generalizes the low frequency result for 1:‘” m (2.24). In this limit, from (2.16) we 
have 

3 

cLT@) + 4 J 9H,’ 
fj$ Q(k) = p J dkk-*P(k) as k + 0, (2.26) 

which is 36 times the value for primordial adiabatic perturbations, &w(O), in eqn. (2.17). That is, in the 
long-wavelength limit, we expect the rms anisotropy to be 6 times larger for the late-time scenario than for 
primordial adiabatic fluctuations; it is worth noting that, for primordial isocurvature fluctuations, the rms 
Sachs-Wolfe anisotropy is also six times larger than for adiabatic perturbations, (AT/T)sw,ieoc = 2ip. 

Based on this discussion, one may be tempted to conclude that the behavior min[lk] w 1 as k - 0 is 
generic. However this is not the case. To see this, consider minimizing Ik for the small space of functions 

fkh) = y +a*sin(2?iy). (2.27) 

h thk Cae, Ik iS giVen by 
Ik = bin.C + ak 11 + 4:12, 
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where I,i”,k is given by (2.23), and (see Appendix A) 

and 

- -&d2 + O((kq,#) as k w-, 0 

1 

J J 
1 

Iz =(2*)2 dz dy sin(k’Td(z -y)) c42?rs) cos(2xy) 0 0 kwb - Y) 

=& 
( 
Ci(lktld + ‘hi) - Ci(jkqd - 2rl) - In 

I:;‘iZl) 

+ g (Si(krld + 2r) + Si(kqd - 2~)) + 
V*Y 

~2~~2 _ (kqd)2 (l - C~S(h)) 

- &(k’ld +~(hd6) as k-0 

Minimizing 1, with respect to a,, gives 

1 1 
11 =2n dx J J dy sin(km(z - Y)) 

(cos(2rz) + cos(2xy)) 
0 0 km(z - y) 

=j$ Ci(lk~d+2?rl)-Ci(lkrld-2?r()-ln (. I:;::::()~ 

and hence 

II 10% 

ak = -z7; --* 3(kqd)* - + ~((k9d”) as k + 0, (2.31) 

“$[Ik] = 1lin.k - 2 + % + O((kvd)2) w k+O. 

(2.29) 

(2.30) 

(2.32) 

The small-k limit of the minimizing integral 1, is 4/9 of the value estimated above, so the corresponding 
minimal C(0) is 4/9 of the value given in (2.26). Thus, for the class of functions (2:27), in the long 
wavelength limit the minimal late-time rms anisotropy is 4 rather than 6 times larger than for primordial 
adiabatic fluctuations. However, in order to achieve this limit, the coefficient .a~ diverges, and therefore 
the function fk becomes unbounded, as k + 0. This pathological behavior is not what one would expect 
for the gravitational potential evolution in a ‘realistic’ late-time scenario, but it provides a lower bound on 
the anisotropy in the long wavelength limit. One can generalize this procedure by adding m terms of the 

f0m ak,m sin(?rm(?j - Tr)/qd) to fk in eqn. (2.27); we shall use this technique below in our numerical work. 
Extending the sum to larger m further reduces the small-k limit of fk from the value we found for m = 2. 
Also note that in the short wavelength limit, k 
However, as m is increased, the ok,,, 

-+ 00, ah.2 + 0 and we retrieve the linear solution (2.20). 
fall off more slowly with increasing k. 

The lesson we draw from this example is that the minimal late-time anisotropy can be substantially 
smaller than that in the linear model fk which we have been focusing on, but that this reduction is achieved 
at the cost of introducing a potential function fk(q) which varies rather wildly with conformal time. 

Multipole Expansion 

It is often convenient to expand the temperature correlation function in angular multipoles, 

J 
1 

where cc = 2?r dcosBP~(cosB)C(B), (2.33) 
-1 

and the Pt’s are Legendre polynomials. For the late-time scenario, the angular integral in (2.33) decouples 
the two integrals over conformal time in Eq.(2.12), and the resulting angular power spectrum is 

18H,4 
‘)O 

2 
ct,LT = - 

7r J dk k-*P(k) [J dvh(k(rl. - ‘t))jk(d , 
‘1. 1 
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where j,(z) is the spherical Bessel function. Again, we can compare to the Sachs-Wolfe anisotropy for 
primordial, adiabatic perturbations, 

C (,sw = 2 J dk k-2P(k)ljt(kr7,)]2 

The angular spectrum (2.34) points to two curious features of the minimization of CLT(O) which 
was missed above. First, it is apparent that by judicious choice of the functions fk(q) we can make any 

particular multipole moment C’e vanish. (We will see an example of this in §IV below.) Once a given 
multipole is set to zero. this specifies all the fk, and the other multipoles will in general be non-zero. 
However, consider the unphysical case in which the potential turns on instantaneously at conformal time 
TJ = vf, i.e., fk(q) = t?(r, - Q). Then the bracketed expression in (2.34) becomes jl(k(qo - vf)). In particular, 
in the limit Tr + q,,, this expression vanishes for all e > 0. Thus, if the potential turned on instantaneously 
at the present time, we have CLT(O) = 36Csw(O), in agreement with (2.26), but the anisotropy is hidden 
in the unobservable monopole term Co. (This possibility did not appear in the high and low frequency 
limit discussion of C(0) above, because we did not subtract off the monopole term there.) While a useful 
theoretical foil, this example is not of direct physical interest: an instantaneous turn-on of the potential 
violates causality. More generally, structure on a given scale cannot be made in less than a light-crossing 
time for that scale. Furthermore, we know that structure existed before the present time: conservatively, 
the gravitational potential corresponding to the growing mode density fluctuation was essentially in place 
by a redshift y ;L 3, corresponding to qf 5 0.57,,. This constraint, which we will impose in calculating 
observables below, implies that the e # 0 multipoles will be non-zero, although the higher multipoles may 
be relatively suppressed. 

To see this, consider the instantaneous turn-on of the potential at y. Then the contribution of the 
k-mode waveband to the &h moment, relative to that for the primordial Sachs-Wolfe anisotropy, is 

dCt,m/dnk 
dCt.swldlnk 

= 36 je(;pk;;h))] * + 36 [l - (1 + Q)-‘/~] 2’ as k-iO, (2.36) 

for L # 0. For example, with zf = 3, in the long wavelength limit, the late-time quadrupole is larger than 
that for primordial perturbations, but the octopole and higher moments are smaller. On the other hand, 
if the potential turns on rapidly at y >> 1, as would be expected in most plausible late-time models, then 
C&LT = 36Cc,sw, independent of k: in this case, the multipole structure in the late-time and primordial 
scenarios is identical, but the late-time anisotropy is 6 times larger. 

III. Minimization for Finite Beams: Formalism and Numerical Results 

In the previous section, we studied the temperature correlation function under the assumption of an 
infinitesimally small beamwidth. We now wish to consider the expectation of the mean square anisotropy of 
a realistic beam configuration when averaged over the sky and averaged over all observers. This is given by 
some rotationally invariant quadratic moment of the temperature field, which, using (2.4), may be written 

7= J 2 W(cos a) (++)?'ti))G n = ;~;dcosnly(cos,jCi,) 9. 
=4 J $$ Q(k) j-r dv J,; dd [/: + Wy)ih/(rl’ - vd2 + (v -G)* - 2 Y (9’ - 70) (II - vo)) 1 

x ikh) jkh’). 

(3.1) 
Here, a~ before, Q is the angle between d and ti, and W(cos a) is a weighting function which is determined 
by the beam configuration. For the temperature correlation function C(u) we have used (2.12), except that 
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the upper limits on the 9 and q’ integrals are 9f instead of llO. This replacement incorporates the assumption 
that the potential perturbations were constant from the epoch 9( until the present, 9,,, that is. that &(9) = 0 
for 9 > 9r, This corresponds to the statement that the growing mode density fluctuations were in place at 
some minimum redshift y. 

Our task is to find the functions fk(q) which minimize 7. Following eqns. (2.16, 2.18), we use the 
somewhat more compact notation: 

3 
7 =4 (&;3 J - Q(k) I,, I,[fk] = “d9 J J ‘)‘ hi Skt9> 9')hdd hdo') ')r 'I. 

1 1 J 
(3.2) 

!Ld%d) =ij -1 dyWty)jo (kv’trl’ - d2 + (v- v,)~ - Zy(9’ - 90) (9 - 90)) 

Note that from the definition of gk, we have gk(9,9’) = r&(9’, 9), and in any case the integral Ik only depends 
on the symmetric part of gk. 

Explicitly, the condition that fk gives an extremum of the functional Ik is that 

$k[fk + A] = 0 (3.3) 
c=o 

for all functions A(9) which are zero at the endpoints, A(9,) = A(rl,) = 0. Thus 

&fk+'~l~<=o=2~~d'l ~:'drl'gk(r),Il')~k~9)~(9') ')I 7, 
c-2 J J dv dll’glc,zt’lr9’)jkt9)At9’) + 2 

m ‘I. J 
')‘ 

dlljk(r))[At9ft)gk(~.9rr) - At9rMsrlr)l (3.4) 
‘). w m 

=2 dq J J dll’Sk.zt”f - 9)&9)Atd) 
,I I, 

where we use the notation Sk.2 to mean differentiation with respect to the second argument, gk,, = 
%(Z,Y)/~Y, and we have used the symmetry of gk. Since this is true for all variations A, we see that 
this is equivalent to the condition 

J 
?I 

dr)g1..2hv’) fktd = gk,Z(‘lfr 9’) - J 
m 

d9S.w2(9)7,9’) fk(9) = 0 v 9) E (W,9f). (3.5) 
‘)r m 

This expression is of the form (operator) x fk =function. If we can find the inverse of this linear integral 
operator, then we can solve for fmi" k, which minimizes Ik. Using this equation in the definition (3.2) of Ik, 
integrating by parts, and using the boundary conditions (2.10), we find that for a true extremal function 'N 

en[rk] = Sk(9fr,Vff) - J d91k,l(9,9fr)fmi”k(9). (3.6) 
m 

The details of the numerical procedure we use to fmd fmink are given in Appendix B. We replace 
the continuous conformal time interval 9 E (1l~,9f) by a grid of N points n, and use the trapezoidal rule 
approximation to convert the double integral for Ik into a double sum. Following the discussion of 511, we 
choose 9f = 0.590 and to excellent approximation set 9. = 0. We generally find that the set of fmink(v) 

is discontinuous at the scale of the grid. To impose a smoothness cutoff independent of the grid size, we 
therefore expand the fk in sine waves, generalizing (2.27), 

fk(9) = ; + 2 ak:rn sin (-r$) , 
rn=l 

(3.7) 
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with integer m. As required, this satisfies the boundary conditions fk(O) = 0, fk(vr) = 1. By taking n < N, 
we restrict /k(q) from varying significantly over the grid scale. For the results shown below, we used R = 70 
or n = 100 sine waves and N = 200 grid points. As a check, we have also expanded the fk(q) as polynomials 
of order n (with appropriate boundary conditions) and minimized the Ib with respect to the coefficients 
using an n - l-dimensional simplex algorithm. The results thus obtained are consistent with the analytic 
and numerical techniques discussed above (although this “brute force” method generally finds I,, larger than 
the more rigorous discretization). 

Before we can proceed to minimize Ic, we must choose the particular weighting, W. for which we 
wish to minimize 7. The functions fk which minimize 7 are unlikely to be the same for different functions 
W(coscr). First, to make contact with the discussion of $11, consider minimizing the mean square anisotropy 
at a point, C(0) = ((AT/T)*). In this case, the appropriate window function is W(y) = lim,,o+ 26(y- l+c), 
where the small positive e guarantees that the full &function is included in the integral. Substituting this 
into (3.2), we find gk(q,v’) = sin(k(q - q’))/k(v - T’), in agreement with (2.18). 

To minimize other quantities more directly related to experimental observations, it is convenient to 
again expand in multipoles. Using the multipole expansion (2.33), we can write 

(3.8) 

where 

W(z) = -52Lf 1) We Pm(z) and 
1 1 

W(z) P&) dz. (3.9) 
kcl 

wr=2 --1 J 
In terms of W< we may rewrite the expression for gb in (3.2): 

9?4%11’) =; 52(+ 1) we J 
1 

dyPr(y) sinkJ(9’ - ~2 + (rl-~? - 2~ (9’ - VJ (71 -rho) 

kll -1 kdh’ - ~2 + (rl - qo)* - 2~ (rl’ - vo) (7 - rlo) 

2L+l)wc 
A 

kdh’ - vo)(v- vo) 
Jr+4 (k(q’ - ~.a)) Jr++M - 4) (3.10) 

= j&+ 1) wrjr(k(d - rlo))jr(k(rl- 70)) 
r=o 

where the J, are Bessel functions, and j,(z) = mJ,++( z are spherical Bessel functions. ) 

Minimization for a finite beam experiment 

Although we discussed the minimization of the rms temperature anisotropy C(0) in $11, we also pointed 
out that it is not an observable quantity. Instead, one measures the temperature fluctuation over some finite 
region of the sky determined by the beam pattern of the instrument. In many cases, the instrument beam 
is roughly of Gaussian form. Given the intrinsic temperature pattern on the sky, one can construct the sky 
temperature pattern convolved with the beam. For a Gaussian be- of width r (radians), the two-point 
correlation function of this beam-smoothed pattern is given by 

m 2t+1 
C(a, 0) = c -e 

_ 

rdl 4= 
r(‘+1~“2cc P~(COSU). (3.11) 

Thus, to minimize 7 = C(cr, a) we would use 

WC = e-‘(r+‘)olp&sa) 
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in (3.10) to determine gk(v, 7’) 

As an example which we will use below, consider the recent COBE DMR observations (Smoot: &al. 
1992). The DMR beam is approximately Gaussian with a 7” FWHM: since cr = 0.43 FWHM, this implies 
~COBE = 5.2 x lo-*. The DMR team published three results of interest: the quadrupole anisotropy; the 
correlation function (3.11) with terms e = 0, 1. 2 removed: and the rms fluctuations smoothed on loo. with 
the monopole and dipole removed. The latter result is the most useful for us. and we can express it via 
(3.11) as C(0, u[lO”]), where the beam-width corresponding to the 10” FWHM is g[lO“] = &coBE, and 
we remove the I = 0, 1 terms from (3.11). 

In §IV, we will give results for C(O,u) for a variety of beamwidths o; from (2.34), (3.11). and (3.12), 
we have 

C(O,u) =z J dkk-‘P(k) c(2C + l)e-‘(c+‘)“z [J ” dqj,(k(, - q))jk(q) 1 
2 

k2 0 
9H,4 J 

(3.13) 

=s dk k-*P(k)&(O, u) 

In Fig. 2, we show the minimizing integral min[lb(O, u)] for C(0, o[l”]) and C(0, u[lO”]) as a function of 
kqO, for the late-time scenario (minimized according to eqn. 3.7, and shown as the points denoted LT in 
the figure) and for primordial adiabatic perturbations (curves denoted SW). This shows that, for a given 
power spectrum P(k), the minimal late-time anisotropy on 10’ is smaller than for primordial adiabatic 
perturbations, unless the spectrum were narrowly peaked around kq,, 
similar. On lo, 

N 20, in which case they would be 
the situation from Fig. 2 is less obvious: if P(k) has little power at kqo 5 20, then the 

minimal late-time anisotropy on this scale could be larger than the primordial anisotropy, but if there is 
significant power on these large scales, the larger Sachs-Wolfe Ic in this small-k region would lead to larger 
relative anisotropy for primordial fluctuations. Note that the corresponding potential functions fk(v) for 
the minimizing late-time scenarios are wildly oscillating functions of 7 (see Appendix B and Fig. 6). If we 
instead constrained f&(q) to be a more gently varying function as in $11 (e.g., eqn. 2.20), the resulting Ik’s 
in the late-time models would lie above the Sachs-Wolfe results over the range of k shown in Fig. 2 (Cf. 
Fig. 1). 

Minimization for a Multiple Beam Switching Experiment 

A common type of MBR anisotropy experiment is a switching experiment which, in its simplest form, 
consists of measuring the temperature convolved with a Gaussian beam at 2 or 3 evenly spaced points on 
the sky. For reference, we give here the corresponding window functions. For a 2-beam experiment with 
Gaussian beam-width c, and beam throw a, one should take 

(3.14) 

and hence 
w, = e-e(C+l)ol(l - P~(COScr)). 

For a three-beam experiment with throw Q between adjacent beams, one can take 

(3.15) 

74 (( E-AT AT 2 
Tl 2T2 + 73 1) = C(O,~) - $C(o, 0) + &za, o), (3.16) 

and hence 

w, = e-~(~+l)Oz(l - $cosa) + $J&os2cx)). (3.17) 

The number quoted for “AT/T’ for these experiments is fi times some factor, where the factor used may 
vary from experiment to experiment. 
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IV. Power Spectra and Results 

At present, the COBE DMR results are the only probe of the power spectrum on scales larger than 
a few hundred h-‘Mpc. Under the standard hypothesis of primordial adiabatic perturbations. COBE 
provides direct information on the large-scale primordial power spectrum through the Sachs-Wolfe effect, 
e.g., eqn.(2.13), and Smoot. etal. (1992) find P(k) a k”, with n z 1 f 0.5. However, if we discard the 
assumption of primordial perturbations, the results of a MBR anisotropy experiment can no longer be 
used to determine P(k) in the absence of a specific model for the evolution of the gravitational potential. 
Specifically, the consistency of the COBE results with the inflationary prediction of a Harrison-Zel’dovich 
spectrum, P(k) oz k on large scales, could be an artifact of some other power spectrum along with suitably 
chosen k-dependence for the evolution functions fir(v) (Cf. Fig. 1). 

Complementing the COBE results, there have recently been several determinations of the galaxy 
power spectrum from catalogs derived from the IRAS survey and others. However, these observations do 
not determine the power spectrum on scales large enough to overlap those probed by COBE. Ia particular, 
while COBE probes the (primordial) shape of the spectrum on very large scales, galaxy observations only 
extend up to scales of order 100 h-i Mpc, where significant processing of the primordial spectrum has taken 
place. If we do interpret the COBE results as a Sachs-Wolfe probe of primordial perturbations, then the 
resulting COBE spectrum (e.g., Harrison-Zel’dovich) need only be matched onto the smaller scale galaxy 
observations (modulo such crucial factors as biasing and selection effects). In the late-time scenario, however, 
the shape of the power spectrum on large scales is not uniquely fixed, but only constrained, by the COBE 
observations. 

In the previous section, we compared the contributions to the auisotropies for the late-time and 
primordial scenarios from a given wavenumber k, for the same amount of power P(k). Here, we integrate 
these contributions over several phenomenological power spectra to ~make predictions for the observable 
anisotropy for different beam configurations. These phenomenological spectra include two models which 
approach the Harrison-Zel’dovich form at large scales, but which differ on small scales: one is the standard 
cold dark matter (CDM) spectrum, and the other is au analytic fit to the QDOT galaxy power spectrum. 
However, since we are not assuming primordial perturbations, we should not interpret the COBE results 
to mean that the spectrum must approach something like the Harrison-Zel’dovich form at large scales. 
Therefore, we also consider a third spectrum, based on a fit to the QDOT data at small scales as well, but 
which is more sharply cut-off at large scales, with P(k) 0: k4 as k + 0. 

The three spectra we use are 

kT?k) CDM 

P(k) a kckp/ (1 + (k/k,,)*) MGSS-I (4.1) 

k%-“*/ (1 + (k/k,,,“) MGSS-II 

Here T(k) is the CDM transfer function of Bond and Efstatmou (1984) for G = 1, Gn = 9.03, and h = 9.5, 

T(k) = [1 + (ak + (bk)3/2 + (~k)~)~]+, (4.2) 

where 

a = 5.8(0/r*)-‘Mpc, b = 2.9(Rh2)-‘Mpc, c = 1.6(Rh2)-‘Mpc, v = 1.25, (4.3) 

and p = Sh-‘Mpc, k,’ = 30h-‘Mpc. The last two spectra in this list were used by Martinez-Gonzalez, 
Sanz, and Silk (1992) as approximate phenomenological fits to the power spectrum from the QDOT survey 
of IRAS galaxies (Kaiser et al. 1991). These models, along with the power spectra inferred from the QDOT 
(Feldman, Kaiser, and Peacock, in preparation) and 1.2 Jansky IRAS redshift catalogs (Fisher et al. 1992), 
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are shown in Fig. 3. We normalize the model spectra in the usual way, by setting the rms mass fluctuation 
within spheres of radius 8 h-‘Mpc to be 

u8’ = 
6M * 

(( )) 
1 

M 
=- J 2x2 o m Q!k k2P(k)W2(~R)lR=sh-IM~~, R=Sh-1MpC 

where the window function is W(kR) = 3(sin kR - kRcos ATR)/(~R)~. Below, we present results for 1~;‘. 

I; Fig. 4, we show the anisotropy expected for a 2-beam experiment at a given angular scale, 
(AT/T), /2 = (C(O)-C(B)) in units of us’, for the linear late-time model f p of eqn.(2.20) and for primordial 
adiabatic perturbations, for the three spectra of eqn. (4.1). For the MGSS-1 and CDM spectra, which both 
approach the Harrison-Zel’dovich form at large scales, the large-angle rms anisotropy (AT/T), in the late- 
time model is roughly three times larger than the corresponding anisotropy in the model with primordial 
adiabatic perturbations. The results are different for the sharply falling spectrum MGSS-II: since this 
spectrum has no power on large scales, the late-time anisotropy is smaller than the primordial Sachs-Wolfe 
anisotropy in this case, but by less than a factor of 2; this is in agreement with the expectation from eqn. 
(2.22). Note also that, in accord with Fig. 1, for the same power spectrum P(k), the angular dependence 
of the anisotropy for the linear late-time model differs substantially from that for primordial fluctuations at 
small angles. 

In Figure 5, we show the correlation function C(0, o) as a function of beam-width o, with the monopole 
and dipole terms subtracted off. Again we use the spectra of (4.1). and show results for primordial adiabatic 
perturbations (eqns. 2.35, 3.11, and 3.12) and for late-time perturbations, eqn. (3.13), minimized according 
to eqn.(3.7). A note of caution in reading the late-time curves in this Figure: the integral Ik(O, u) has been 
minimized independently at each value of o, i.e., different potential functions f&(v) have been chosen at 
each o. Therefore, a given late-time curve in this figure does nol correspond to a fixed late-time scenario 
(i.e., to a fixed set of f~.(v)), but rather to many different scenarios. Consequently, the o-dependence of the 
late-time curves should not be interpreted as implying that the anisotropy for a given late&me scenario falls 
off with increasing beam-width according to these curves. In fact, for a fied late-time model that minimizes 
the signal at some particular o,, the fall-off at g > v, would be more gradual than in the figure, while the 
rise in the signal at o < o, would be steeper. 

The COBE DMR result for the fluctuation on 10 degrees, CDMR(O, o[lO”]) = (1.2 xk 0.4) x IO-l’! is 
shown for comparison (Smoot et al. 1992). For beam-widths less than a few degrees, the minimal late- 
time anisotropy is comparable to the primordial adiabatic result. However, at larger beam-widths, the 
minimal late-time result falls sharply below the Sachs-Wolfe anisotropy. We can understand this result 
heuristically as follows. For very large beamwidth o, the contribution of higher multipoles to the sum in 
(3.13) is strongly suppressed. As a result, in this limit, the anisotropy is dominated by the quadrupole (and 
perhaps the octopole). However, from the discussion following (2.34), it is clear that one can choose a set 
of functions fh(q) to make a particular multipole Cc, e.g., the quadrupole, vanish. For ‘7, sufficiently small, 
one would normally expect this to produce large values for the other multipoles, but these higher moments 
enter the large-o anisotropy with very small weighting. As a consequence, the minimal anisotropy for large 
beam-widths can be quite small. 
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V. Conclusion 

We have seen that the MBR anisotropy signature of post-recombination structure formation generally 
differs from that of primordial fluctuations. Consequently, once MBR anisotropy experiments and large- 
scale structure observations begin to overlap significantly in the lengthscales they probe, comparison of the 
two would allow one to definitively test whether the fluctuations are primordial or more recent in origin. 
We have found that, for a given amplitude of present large-scale structure P(k), the minimal late-time 
anisotropy can be up to an order of magnitude smaller than the corresponding Sachs-Wolfe anisotropy for 
primordial adiabatic perturbations. However, as comparison of Figs. 4,5. and 6 show, this minimum is only 
achieved if we allow sufficiently pathological time dependence for the gravitational potential @k(q). If we 
restrict the time-dependence of the potential to more well-behaved forms more plausibly to be expected in 
late-time scenarios (e.g., the linear model or the high-redshift, rapid turn-on model of §II), then the large- 
angle anisotropy in the late-time scenario is generally comparable to or larger than that due to primordial 
fluctuations. In particular, this will be the cake if the present density fluctuations have substantial power on 
scales larger than k-’ z 53h-’ Mpc (Cf. eqn. 2.22). While this result runs counter to part of the motivation 
for late-time phase transitions, it is not necessarily a negative result for them, given that large-scale MBR 
anisotropies have now been observed. Furthermore, as recent work suggests (Frieman, Watkins, and Hill, 
in preparation), perhaps the most likely role for late-time transitions is to amplify perturbations that were 
initially present over some range of wavelength, rather than to replace primordial fluctuations entirely. In 
this case, the final power spectrum is due to a combination of primordial and late-time effects, and the 
induced anisotropy will correspondingly arise from both. 

We should also comment on the relation of our work to the recent paper by Martinez-Gonzales, Sanz, 
and Silk (1992). These authors calculate the contribution from the time-varying gravitational potential 
to the anisotropy, as do we. However, they considered a very specific mechanism for the time evolution, 
namely, that the potential varies in time due to mild nonlinearity of the density inhomogeneities; this-effect 
occurs even in an Einstein-de Sitter (spatially flat) cosmology. The anisotropy induced from this non-linear 
gravitational evolution is small, 6T/T - 10e6, and can be more than an order of magnitude below that 
arising from primordial adiabatic fluctuations. This small number is not to be compared with ours, since 
to the second order effect they have calculated must be added either: 1) the effects associated with growing 
the perturbation to the amplitude at which second order effects become important, or 2) the primordial 
anisotropy from last scattering. For the standard gravitational instability scenario, effect (2) dominates 
over the second order effect calculated by Martinez-Gonzalez, &al., unless the universe is reionized after 
recombination. For late-time scenarios in which (2) is absent or negligible, we have shown in this paper that 
effect (1) is not necessarily very small and that, in ‘realistic’ models, it is likely to dominate over the second 
order gravitational contribution to the anisotropy. 

Finally, it is worth noting that our methods could be extended or applied in a number of ways. 
For example, one could use them to estimate the expected anisotropy in a specific late-time scenario, in 
topological defect models of structure formation, and in the loitering universe model (Sahni, Feldman, and 
Stebbins 1992, Feldman and Evrard 1992). In addition, one could consider models in which the perturbations 
induced at late times are non-Gaussian, which one might expect to be a natural outcome of late-time 
transitions. 
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Appendix A 

We evaluate here several of the integrals in the text. First we compute the angular average in eqn. 
(2.8). Consider two unit vectors ri and rh separated by angle a. f~ & = cosa. and a wavevector k such 
thatir~~=~=cos~and~.~=sinasin~cos~+cosacos~. Then 

(e 
W~~-W)e~ti=eooa = s dcosfl drl, exp [ik (ati - brh)] 

j- dcos 0 d$ 
1 

=- 
47r J dcos/3d$ expik(acosP - bsinasin@cos$ - bcosacosfi) 

1 =- 
47r J dcospexp(ik(a- bcosa)cosfl] 

J 
dll,exp(-ikbsincrsinj3cos$) (A.1) 

1 
=- 

4K J dcos,Bexp[ik(a- bcoscr)cosP] x 2r&(bksincrsinP) 

J 
1 = 

0 
dp cos(pk(a - bcoso)] JO (bksinam) 

Doing the remaining integral and applying to the expression (2.8) gives 

(,-ik.h(?.-n)+ik’.m(~~-~‘) 
hvm=coso = joWd(qo - q)* + (vo - q’)* - 2(q0 - q)(qo - q’) cosa), L4.2) 

where j, (5) = sin z/z. 

For the integral Iin in eqn.(2.23), we have 1 
J J 

1 rp = dx dy si=(km(s -Y) 
0 0 k’ld(5 -Y)) 

1 1 J J 
2-I4 

= 2 -1 dv du si=(bd v) u=s+y, v=l!-y I"1 hiv 

J 
1 = 

-1 
dv (1 - /vi) ‘@$;~;‘) 

=2 krld Si(h) - (1 - cos(kvd)) 

[ (hd2 1 
Next consider the integrals II and I2 in eqw(2.27) and following. We have 1 

J J 
1 I, =2?~ d+ dy sin(kl)d(+ -y)) 

0 0 k’ld(~ -Y) 
(cos(27rz) + cos(27ry)) 

1 
=2x dv J J 

W4 du si=(hP) 

-1 14 kW 
cos(*u) cos(*v) u=z+y, u=s-y 

J 
1 

= -4 d,, si=(kW) 
-1 

klldV cos(*v) si=(44) 1 
=-4 dv J Sin(kWJ) 

k9d’J 
sm(2iw) 

II 

ci(lktl, + 2~1 v) - Ci( lkqd - 24 V) “=I 
=2 

hd 1 v=o 

(~4.3) 

(A.4) 

- -$d2 + o((kd) 
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and 

1 1 
12 = (27r)’ dz 

J J 
dy sin(bd(z - Y)) cos(27rs) cos(2Ty) 

0 0 hd(z - Y) 1 
J J 

Z-14 
= 29 dv du sin(hv) 

bdu 
cos(4u + v)) cos(27r(u - v)) 

IUI 
u=z+y, v=z-y 

-1 

J 
1 

= x2 
dv sin(bdu) 

-1 krldv ( 
-i sin(2xlvl) + 2(1 - 1~1) ~~(277~)) 

=R 
[ 

Ci(Ik’?d + 2’d’-‘) - Ci(lk9d - 2~1~) 
b 1 “=I + 2?r2Si(kvd + 2~) + Si(kvd - 2r) v=o km 

- 4R 
2 1 - ‘=(hd) 

(kqd)2 - (2~)~ 

=& 
( 

Ci(lk+2r1)-Ci(lk-2?rj)-ln E 
I I> 

f E (Si(k +2x) + Si(k - 2s)) 

(2*T + ~~)2 _ (krld)2 (l - cos(km)) 
- &@d + o((k'd) 

In the above expressions, we have used the sine and cosine integrals, 

Si(z) = z Fdt J Ci(z) = - J m cost 0 z +t, 

(A.5) 

(A.61 
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Appendix B. Numerical Minimization of the Integral II, 

We wish to find the function F(z) = ft(zqf) which minimizes the integral 

1 
J I 

1 
I= dz dz’G(z. z’) i’(z) &‘) 

0 0 
6-J 

with the boundary condition that 
F(0) = 0 F(1) = 1. U3.2) 

It will be useful to have the symmetry G(z, z’) = G( I’, I) in this integral. The function G( , ) need not be 
symmetric with respect to its two arguments, but clearly the integral only depends on the symmetric part. 
If G(, ) is not symmetric, then we can use instead 

c(z, I’) + ;(G(z,z~) + G(z’, I)) (B.3) 

which has the required symmetry. We may integrate (B.l) by parts to obtain 

I =G(l,l) - /‘dZ:G,&, 1) f(s) - /%‘G,&,s’) f(+‘) + /-Ids /‘dz’G.&,z’) j(z) j(z’) 
JO JO Jo Jo 

rl rl Pl (B.4) 

=C(l, 1) -2 1, d+ c:,1b, 1) f(s) + /, dz J, dz’~,&> 2’) f(r) fb’) 

where ,1 denotes differentiation with respect to the first argument and ,* the second. 

Trapezoidal Rule Discetization 

We can discretize this by only specifying F(z) at a finite ordered set of points {zi} for i = 0,. . . , Nfl 
with 10 = 0 and z~+l = 1. First consider the trapezoidal rule approximation to (B.l): 

N+l N+l 

I = C C GijPiAZi ~jA”j 
i-0 j=O 

(B.5) 

where F. = F(zi), and 

$21 i=O &Vi - Fo) i=o 

Gij = G(z<,z~) AZi = $.i+, - q-1) 1 5 i 5 N pi = $#+I - Fi-I) 1 I i I N 

;(I -IN) i=N+t &(FN+I-FN) i=N+l 

03.6) 
Then using the notation 

AF, = 

i 

FI - Fo i=o 

(Fi+l - F<-1) 1 < i 5 N (B.7) 
(FN+~-FN) i=N+l 

ad the fad that Fo = 0 ad FN+I = 1 to rewrite (B.5) and then “difference by parts” to obtain the 
“difference” analog of (B.4): 

I = a Ne Nf GijAFi AFj = 5 k M,~F~F, _ 2 5 BiFi + G 
*=O j=O kl j=1 i=l 

03.8) 
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where 

Mij =i(Gi+l j+l - G. *+I j-1 - Gi-I j+l + Gi-1 j-1) 

Bi =$+I N+I + Gi+l N - Gi-I iv+1 - Gi-1 N) (B.9) 
1 

c =;(GNN + GN+I N + GN N+I +GN+~ Av+l) 

One may then use standard linear algebra techniques to solve for the set of {F;} which extremizes this 
discretized approximation to I: 

Fp” = $ M;‘Bj. (B.lO) 

For large enough N, the set {F,!“‘“} should give a good approximation to the function F(z) which extremizes 
I. Note that for {F,F’“} to actually be a minimum and not a saddle-point requires Mij to have only positive 
eigenvalues. While it is clear that this is true of the continuous integral operator, we have not shown 
it for this discretized representation. Also note that, instead of the trapezoidal rule, we could use some 
higher order approximation to the integral. As long as this approximation is bilinear in pi, this would just 
correspond to a different matrix Gij, and the rest of the analysis would carry through. 

With the technique described above, we generally find that the set of { F,p’“} is discontinuous at the 
scale of the grid. The discontinuous nature of the minimal { F$T’“} holds even for small n, so we are confident 
that this behavior is not a result of round-off error. The convergence of I for increasing N is also fairly 
rapid, although there is significant “noise” in this convergence. We cannot be certain that, the minimal I we 
obtain with this method is obtainable with any smooth function F(z). While there is a piecewise bilinear 
2-dimensional integrand which gives this integral, we cannot be sure it is of the form GJ~(z,z’) F(z) F(d). 
We also cannot be certain that Mij has no negative eigenvalues and that the “extremum” we have found 
is not actually a saddle point. However, we believe that the the minimal values we obtain are actual lower 
limits to what is achievable with a smooth function. In any case, most of the peculiaritks of these results 
are almost certainly dependent on the difference scheme used. The basic problem is that the integration 
scheme requires the function to be smooth on the grid scale in order to be accur&e, while the minimization 
scheme is forcing the integmud toward discontinuity. The solution to this problem is to have two resolution 
scales, the smaller one used to perform the integral and the larger one setting a bound on the jaggedness of 
F(z). This will allow us to vary the accuracy of the integral and the smoothness of F(z) independently. 

Sine Wave Expansion 

One way to implement a smoothness cutoff, independently of the size of the grid, is to first expand 
F(z) in some set of smooth, linearly independent functions. The simplest example are sine functions, 

F(s) = z + 2~2~ sinolrz (B.ll) 

for integer a. Since sino?rz = 0 for z = 0, 1, eq. (B.ll) enforces the boundary condition (B.2). The 
sinarz for integral a are a complete set of linearly independent functions on the interval (0, l), and will 
be linearly independent of the function I for finite n. However, since z and the {sinazz} are nearly not 
linearly independent for large n (i.e., smoothed over au interval of size m l/n, one can approximate z by a 
superposition of n sine waves), one must be careful about unnecessary small eigenvalues in the matrix Lab 
below, which may cause problems numerically. An expansion in Legendre polynomials such as 

F(z) = S(z) + &a (&+1(z) - Fib)) 
0=1 

(B.11’) 
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would not have this problem. However, sines are superior to Legendre polynomials. because they have a 
fairly uniform variation over the interval and hence give a fairly uniform resolution. The PI’s for large I have 
much more rapid variation near z = 1 than near I = 0. 

Using a grid, {z;}, as above and the sine wave expansion (B.ll), we may rewrite (B.9) as 

I=~~L,@,aa-253.a.+D 
o=l bCl o=l 

(B.12) 

where 

Lob = 2 2 Mijsbsi 
1=1 j=l 

Pa = $ B;s~ - 2 $ McjZis{ 
i=l )=I 

D=?eMijzizj-22Biri+C 8: = sin a?~zi 
i=l j=1 i=l 

This has extremum 

(B.13) 

Fmin(z) = z + 2 crp sinaxr. (B.14) 
0=1 

Of course, we must have n 5 N for L,,& to be non-singular. If n = N, then Lab is related to Mob by a 
similarity transformation, and nothing has been changed. However, for n < N we prevent F(z) from varying 
wildly on the grid scale. In Fig. 6, we show the function jk(q) for the solution which minimizes the integral 
Ik(O, g[lO’]) (Cf. 3.13). Here, we have fixed kqo = 20 and N = 200 grid points, and we vary the number of 
sine waves used, n = 2, 10, 99, and 100. We see that, as n is increased, the function jk becomes increasingly 
noisy, and that, even at large n, the form of the potential function can change substantially with a small 
increment in the number of sine waves. Nevertheless, for sufficiently large n, the value of the integral Ik 
converges fairly well. Comparison of the integral for large and small n shows that the linear model n = 0 
overestimates I, by more than au order of magnitude. 
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Figure Captions 

Fig. 1: The functions J(k, a) (eqn. 2.25) zs a function of kqo for the primordial Sachs-Wolfe (SW) anisotropy 
(dotted curves) and for the linear late-time model (LT), fp (solid curves). Moving from bottom to top, the 
curves correspond to angles Q = 10, 20, 90, and 180 degrees. 

Fig. 2: The integrals Ik for C(0, o[l”]) and C(0, o[lO’]) f or rmmrdial adiabatic perturbations (SW curves) p 
and for the late-time scenarios (LT points) which minimize the correlation function f&red through these 
two beam-widths, cf. eqn.(3.13). Note that the monopole and dipole terms have been removed. 

Fig. 3: Density power spectra P(k) (eqn. 4.1) are shown for the three models of eqn.(4.1), denoted MGSS-1 
(solid curve), MGSS-2 (dot-dash curve), and CDM (dashed curve), all normalized to as = 1. Also shown 
are the inferred galaxy power spectra from the QDOT (open squares, Kaiser, etal. 1991, as reanalyzed 
by Feldman and Kaiser, in preparation) and 1.2 Jansky (crosses, from Fisher, &al. 1992) redshift surveys 
based on the IRAS catalog. The survey spectra have not been corrected for redshift distortions, and are 
shown here principally to motivate the phenomenological fits of eqm(4.1). (Note that our convention results 
in a factor (r/2)3 difference in the value of P(k) from that used by Fisher, &al. (1992) for the 1.2 Jansky 
results.) 

Fig. 4: The temperature correlation function [C(O) - C(e)]o;* vs. 0 is shown for the linear late-time model 
jp of eqn.(2.20) (curves marked by crossa, triangles, and boxes) and for primordial adiabatic fluctuations 
(unadorned curves), for the three phenomenological spectra of eqn.(4.1). 

Fig. 5:.The temperature correlation function C(0, o[FWHM])a,’ f or an experiment of Gaussian beamwidth 
D is plotted aa a function of beam FWHM, for primordial adiabatic perturbations (unadorned curves) and 
for the late-time scenario (curves marked by crcews, triangles, and boxes) numerically minimized according 
to eqn. (3.7) (Cf. eqn.3.13), again for the three spectra of (4.1). Note that each late-time curve corre- 
sponds to many different late-time models, each of which minimizes the anisotropy at a given u. The COBE 
observation at FWHM of 10 degrees is shown by the closed circle. 

Fig. 6: The potential function fk(q) as a function of conformal time q/q0 is shown for the late-time model 
that minimizes the loo anisotropy C(0, o[lO”]), for 6x e wavenumber kq0 = 20, N = 200 grid points vi, d 
and for R = 2, 10, 99, and 100 sine waves. This demonstrates that the time dependence of the gravitational 
potential becomes increasingly noisy for large n, but that the integral Ik converges a8 the number of waves 
is increased. Note that the boundary conditions fk(O) = 0, fk(q, = 0.5~~) = 1 have been imposed. 
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